Multimedia

- Video Signals -

Philipp Slusallek Marco Lohse

Overview

- Video Signals
 - Devices: Cameras and Displays
 - Color
 - Signal
 - Standards
 - Digital Video

Video

Principle of TV and Video

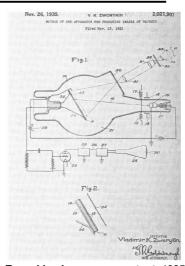
- Transform of changing 3D-scene into 1D data stream
 - ➤ Projection of 3D to 2D
 - ➤ Sequential Zig-Zag scanning of 2D region
 - ➤ Digital: Sampling and quantization of 1D-signal
 - > Transmission
- And back ... as far as possible

Dimensions of Video Data

Space: 2D imageTime: frames

- Data values: 3 color channels

→ Coherence of values over space and time

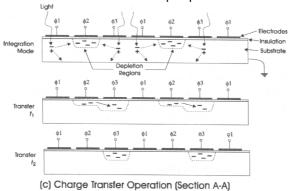

Video

Analog Camera

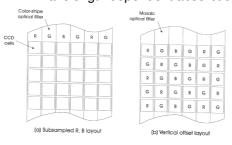
- From mechanical to electronic
- Camera was the key to make TV work

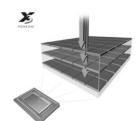
John Logie Baird, 1925

Zworykins Iconoscope patent, 1935 Courtesy: Abramson History of TV


Video

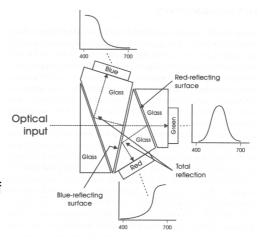
- Digital Camera
 - Charge Coupled Device (CCD)
 - > Special production process
 - > Analog charge transport
 - Need special frequencies
 - > One ADC at the end
 - CMOS imagers
 - ➤ Use standard CMOS process
 - > Amplifier & ADC & processing at pixel
 - Less quality (still), but cheaper


Video


- · CCD-Principle
 - Exposure and integration of electrons
 - Analog transport of electrons through CCD
 - > Three different electrodes per pixel

Video

- · Color Video Sensors: 1-chip
 - Optical color filters for each pixel
 - ➤ Stripe pattern
 - ➤ Bayer pattern
 - ➤ Loss in resolution
 - Stacked filters (Foveon X3)
 - > Wavelength dependent absorbtion



Foveon X3 Sensor

1 OVCON AC CONSO							
R	G	R	G	R	G		
G	В	G	В	G	В		
R	G	R	G	R	G		
G	В	G	В	G	В		
R	G	R	G	R	G		
G	В	G	В	G	В		
Bayer pattern							

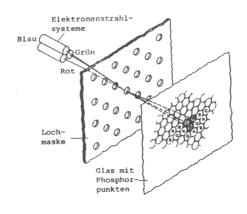
Video

- · 3 sensor design
 - Full resolution
 - Use of dichroic filters
 - Significantly more expensive
- Dichroic Filter
 - Coated glass
 - Reflect one part of spectrum, pass other

Cathod Ray Tube (CRT)

• CRT (Braunsche Röhre)

- Phosphoreszence
 - ➤ But no Phosphor:
 - R: Europium yttrium vanadate,
 - G: Zinc cadmium sulfide,
 - B: Zinc sulfide


Excited with electron beam

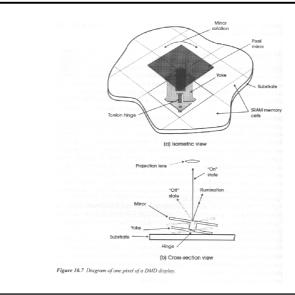
- ➤ Tungsten fillament (slow e⁻)
- ➤ Control grid (negative)
- > Focussing
- ➤ Deflection
 - Electrostatic (fast, e.g. Oszilloscope)
 - Electromagnetic (better focussion, graphics)
- ➤ Accelleration (~20 KV)

Shadow Mask

Color Display

- Multiple electron beams
- Shadow mask
- Projection of mask onto screen
- Color raster
- Low intensity
- No correspondence between shadow maskand pixels !!!

Liquid Crystal Display (LCD)

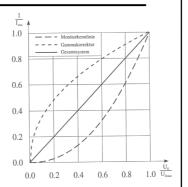

- Use of Nematic Molecules
 - Elliptic form
 - Rotates polarization if oriented across light direction
 - Orient due to
 - ➤ Grooves in surfaces
 - ➤ Electric field
 - In combination with polarizing filters
 - ➤ Light switch/valve

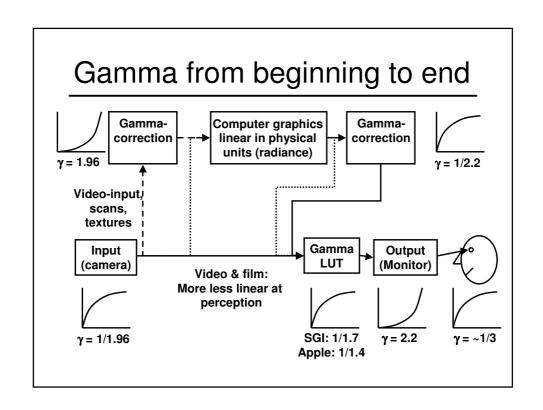
Liquid Crystal Display (LCD) View Color Polarizer 90° Column contacts 90° Grooved glass plate Typical LC molecule Liquid-crystal alignment material with E=0 0° Grooved glass plate contacts Polarizer 0° light source Figure 10.3 Structure of an LCD panel. From A. F. Inglis, and A. C. Luther, Video Engineering, Second Edition, McGraw-Hill, New York, 1996, reproduced with permission of The

Digital Micromirror Displays

- Digital Micromirror Devices
 - Modulation of light with many tiny mirrors
 - 2D SRAM Cells
 - > Electrostatic movement of micro mechanical mirror on top
 - ± 10 degree
 - Grayscale through temporal integration
 - > Fast switching: time on versus time off
 - Color
 - > Three DMDs
 - > Time sequential with rotating color wheel

Digital Micromirror Displays


Gamma


· Display Gamma

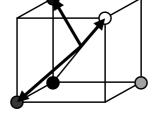
- Intensity I of electron beam is non-linear with respect to the applied voltage U
- Best described as power law
 ▶ I= U^γ
 - → Gamma-Factor γ = ~2.2 due to physical reasons

Gamma correction

- Pre-correct output values to achieve linear curve
- Quantization loss if value represented with less than 12 Bit

Color Spaces

- Gamma:
 - Video operates in perceptional uniform space \triangleright I'= I' mit γ = 1/2.2= 0.45
 - Graphics (should) operate in linear light space
- Luma not Luminance
 - Y' ≠ Y (from standardized CIE color space)
- Color space: YUV?
 - RGB, R'G'B' needs primaries and white point
 - Y' B'-Y' R'-Y' ITU Rec. 601 or Rec. 709 color space
 - Y'P_bP_r ditto, color normalized to [-.5, .5]
 - Y'C_bC_r ditto, head room, digital
 - Y'UV, Y'IQ NTSC only (scaled and rotated for better


modulation on carrier)

Color Spaces

- R'G'B'
 - Three primary colors (Red, Green, Blue)
 - Values are not gamma-corrected (Note: R ≠ R´)
 - Problem
 - > Need to transmit all channels equally
 - > But humans are more sensitive to brightness than color
- Several color standards for video
 - NTSC (National Television Standards Committee)
 - EBU (European Broadcasting Union, for PAL)
 - ITU (International Telecommunication Union)
 - Close to today's cameras and monitors
 - > Uses D65 as white point

Color Spaces

- Y'P_bP_r (often called YUV)
 - Basic color space used in NTSC and PAL
 - Separation in one brightness and two color signals
 "Color difference signals"
 - $-Y'_{601} = 0.299 R' + 0.587 G' + 0.114 B'$
 - $-P_b = 0.493 * (B'-Y')$
 - $-P_r = 0.877 * (R'-Y')$
 - Given RGB in [0,1]
 - $> 0 < P_b < 0.872$
 - $> 0 < P_r < 1.236$
 - Overshooting OK
 - ➤ Analog signals
 - >75% brightness and 100% saturation yields pure video color

Color Spaces

- Y'P_bP_r (cont.)
 - -R'=Y'+1.140 V
 - G'= Y' 0.394 U 0.581 V
 - B' = Y' + 2.032 U
- Y'C_bC_r
 - Color space of used in most digital video
 - ➤ Recommendation ITU-R BT.601
 - Scaled and offset from Y'P_bP_r
 - Assumes full range RGB
 - ➤ Different version with range of [16, 235] (headroom)
 - Y' = 0.257 R' + 0.504 G' + 0.098 B' + 0.062
 - $C'_{b} = -0.148 R' 0.291 G' 0.439 B' + 0.5$
 - $C'_{r} = -0.439 R' 0.368 G' 0.071 B' + 0.5$

Color Spaces

Operations on Video Samples

- Careful: We are operating in a non-linear space
 - ➤ Gamma
 - > But certain operations are still possible
- Typical operations
 - > Changing brightness
 - > Changing color saturation
 - ➤ Changing hue (rotation of color difference signals)

Conversion

- Often converted values cannot be represented
- E.g.: R'G'B'(1,1,1) → YC_bC_r(235, 128, 128) →
- Add color: $YC_bC_r(235, 128, 128)$ → R´G´B´(0.6, 1.29, 0.56)

Sampling/Scanning • Interlaced Scan (TV) - 1 frame (1/30s) = 2 fields (1/60s) - Less data per image refresh - Different exposure time per frame - Problems: flicker, tearing • Progressive Scan (Computer) - No tearing, more flicker → higher refresh rates - Simpler computations

Sampling/Scanning

Subsampling of Color

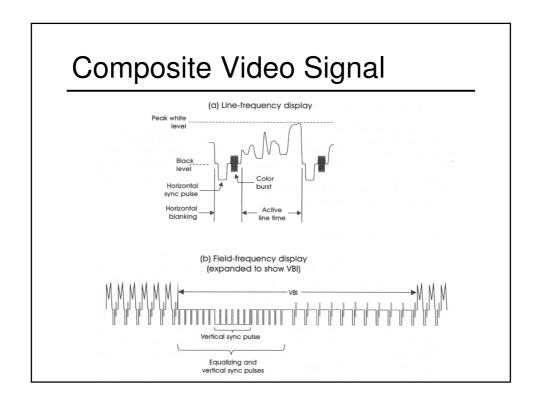
- Humans are less sensitive to changes in color
- Different sampling rate of color
 - ➤ 4:4:4 Equal sampling
 ➤ 4:2:2 Horizontal sub-sampling by 2
 ➤ 4:1:1 Horizontal sub-sampling by 4
 - ➤ 4:2:0 Horizontal and vertical sub-sampling by 2

			•	0 ,
4:4:4 R'G'B'	4:4:4 Y'CBCR	4:2:2	4:1:1	4:2:0
R'0 R'1	Y'0 Y'1	Y'0 Y'1	Y' Y' Y' Y'	Y'0 Y'1
R' ₂ R' ₃	Y'_2 Y'_3	Y' ₂ Y' ₃	Y'4 Y'5 Y'6 Y'7	Y'2 Y'3
G'_0 G'_1	C _B C _B	C _B	C _B	
G' ₂ G' ₃	C _B C _B	CB	C_B	СВ
B'_0 B'_1	CR CR	CR	C _R	
B' ₂ B' ₃	C_R C_R	C _R	C _R	C _R

Video Signal

Transport of

- Serialized image signal
- Must include horizontal and vertical sync signals

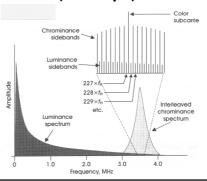

Component Signal

- Separate wire for each color channel
- Original Signal
 - >R, G, B, HS, VS
- Original Signal with separate sync
 - ≻ R, G, B, S
- Integrated sync (usually on green)
 - > R, G, B
 - > Also on VGA or in SCART adapter
- Same with color difference signals YC_hC_r

Video Signal

· Composite Signal

- Combines color signals (crosstalk, deterioration)
- Y/C, S-VGA
 - ➤ Separate luma and color
- Composite, FBAS (Farbbild, Austast, Sync.)
 - > Basisband
- TV-Signal
 - ➤ Modulated onto carrier signal (channel)
- Synchronization signal
 - ➤ Horizontal
 - Inserted between lines (horizontal retrace of beam)
 - Also contains high frequency "color burst" signal
 - ➤ Vertical
 - Inserted between lines (vertical retrace of beam)
 - Also used for equalization of signal



Video Standards

- NTSC The Old Standard
 - 1940/41: FCC forms NTSC (National Television System Committee)
 - Field/frame rate: 60/30 Hz (PAL: 50/25)
 - Lines: 525 interlaced (7x5x5x3) ⇒ 15.750 kHz
 - Interlacing: bandwidth/flicker/resolution
 - Synchronization by H/V sync pulses
 - Video bandwidth: 4.2 MHz in 6 MHz channels
 - Sound: FM @ 4.5 MHz (=2000/7 line rate)

Video Standards

- Adding Color to NTSC
 - Color encoding added to NTSC in 1953
 - Separation of Luma Y' and Color
 - Color coded on sub-carrier @ 455/2 line rate
 - Line rate adjusted by 1001/1000 (29.97 fps)
 - Cross talk between color and sound
 - Sound at 286 x line rate (2002/7=286)
 - > Drop frame time code
 - Insufficient separation of luma and color
 - ➤ Dot crawl
 - > Hanging dots

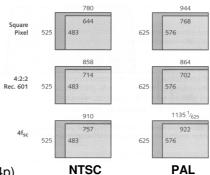
Digitized Video

- 4f_{SC}-Format:
 - Sampling rate 14.318 MHz (= 4x subcarrier freq.)
 - Samples: 910 samples/line, 768 samples/active line
 - Easy reconstruction of color
 - Everything is sampled
 - Perfect copies used in studio
 - No processing of video possible
 - Different for NTSC, PAL, etc

Digitized Video

- ITU-R 601-4 (601)
 - Often called SDI (Serial Digital Video, only for transm.)
 - Sampling frequency: 13.5 MHz
 - Common multiple of NTSC/PAL line rate (6x 2.5 MHz)
 - Samples:
 - ➤ NTSC: 864 s/l 720 or 704 s/al 525 l
 ➤ PAL: 858 s/l 720 or 704 s/al 625 l
 - YC_bC_r color space, 4:2:2 sub-sampling
 - 10bit standard (with an 8bit mode)
 - Synchronization with special digital codes
 - Ancillary data in H/V blanking intervals

Digital Video


Computer Resolution

- VGA 640x480
- SVGA 800x600
- XGA 1024x768
- SXGA 1280x1024
- UXGA 1600x1280

Resolution (ADTV)

- SDTV
 - > 640x480 (60p, 60i, 30p, 24p)
 - > 704x480 (60p, 60i, 30p, 24p)
- HDTV
 - ➤ 1280x720 (60p, 30p, 24p)
 - > 1920x1080 (60i, 30p, 24p)

(p: progressive, i: interlaced)

Digitized Analog Video (inner numbers specify active samples corresponding to active area)

Note: Horizontal sampling is arbitrary

Literature

Books

- Charles Poynton, A Technical Introduction to Digital Video, Wiley, 1996
- Arch Luther, Principles of Digital Audio and Video, Artech House, 1997
- Arch Luther, Video Camera Technology, Artech House, 1998
- Albert Abramson, The History of Television -- 1880 to 1941, Mc Farland, 1987